I was working in Phoenix/Elixir and created a function component for navbar, and got this issue:Done in 38ms. Compiling 1 file (.ex) error: undefined function sigil_p/2 (expected RankgistWeb.NavComponents to define such a function or for it to be imported, but none are available) │ 55 │ href={~p"/users/log_out"} │ ^^^^^^^^^^^^^^^^^^^^^^^^^ │ └─ (rankgist 0.1.0) lib/rankgist_web/components/nav_components.ex:55: RankgistWeb.NavComponents.main/1 error: undefined function sigil_p/2 (expected RankgistWeb.NavComponents to define such a function or for it to be imported, but none are available) │ 45 │ href={~p"/track-competitors"} │ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ │ └─ (rankgist 0.1.0) lib/rankgist_web/components/nav_components.ex:45: RankgistWeb.NavComponents.main/1 error: undefined function sigil_p/2 (expected RankgistWeb.NavComponents to define such a function or for it to be imported, but none are available) │ 8 │ <.link href={~p"/"} class="flex items-center space-x-3 rtl:space-x-reverse"> │ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ │ └─ (rankgist 0.1.0) lib/rankgist_web/components/nav_components.ex:8: RankgistWeb.NavComponents.main/1 == Compilation error in file lib/rankgist_web/components/nav_components.ex == ** (CompileError) lib/rankgist_web/components/nav_components.ex: cannot compile module RankgistWeb.NavComponents (errors have been logged) Compiling 1 file (.ex) error: undefined function sigil_p/2 (expected RankgistWeb.NavComponents to define such a function or for it to be imported, but none are available) │ 55 │ href={~p"/users/log_out"} │ ^^^^^^^^^^^^^^^^^^^^^^^^^ │ └─ (rankgist 0.1.0) lib/rankgist_web/components/nav_components.ex:55: RankgistWeb.NavComponents.main/1 error: undefined function sigil_p/2 (expected RankgistWeb.NavComponents to define such a function or for it to be imported, but none are available) │ 45 │ href={~p"/track-competitors"} │ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ │ └─ (rankgist 0.1.0) lib/rankgist_web/components/nav_components.ex:45: RankgistWeb.NavComponents.main/1 error: undefined function sigil_p/2 (expected RankgistWeb.NavComponents to define such a function or for it to be imported, but none are available) │ 8 │ <.link href={~p"/"} class="flex items-center space-x-3 rtl:space-x-reverse"> │ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ │ └─ (rankgist 0.1.0) lib/rankgist_web/components/nav_components.ex:8: RankgistWeb.NavComponents.main/1 == Compilation error in file lib/rankgist_web/components/nav_components.ex == ** (CompileError) lib/rankgist_web/components/nav_components.ex: cannot compile module RankgistWeb.NavComponents (errors have been logged)to fix the issue of sigil_p/2 being undefined:defmodule LiveViewAppWeb.NavComponents do use Phoenix.Component use LiveViewAppWeb, :verified_routes def main(assigns) do ~H"""...use LiveViewAppWeb, :verified_routes adding this fixed it.

The key advantages of using a SaaS (Software as a Service) model for application development include: 1. Scalability: SaaS allows for easy scalability as users can access the software over the internet without needing to install anything locally.2. Cost-effectiveness: Users typically pay a subscription fee, spreading out costs over time rather than a large upfront investment.3. Accessibility: Since SaaS applications are cloud-based, users can access them from any device with an internet connection.4. Maintenance and updates: The provider is responsible for maintenance, updates, and security patches, relieving users of these tasks.5. Customization and integration: Many SaaS applications offer customization options and integrations with other software, allowing for tailored solutions.

Q2: Let A[n] be an array of n distinct integers. If i < j and A[i] > A[j], then the pair (i, j)is called an inversion of A. Write a C/C++ program that determines the number ofinversions in any permutation on n elements in O(n lg n) worst-case time.(Hint: Modify merge sort)Example: A = {4, 1, 3, 2} output is 4program:-#include<stdio.h> int total_inversions(int arr[], int n, int count); int main(){ int arr[] = {4, 1, 3, 2}; int n = sizeof(arr) / sizeof(arr[0]); int count = 0; count = total_inversions(arr, n , count); printf("%d", count); return 0; } int total_inversions(int arr[], int n, int count){ for(int i = 0; i < n-1; i++){ for(int j = i+1; j < n; j++){ if (arr[i] > arr[j]){ count++; } } } return count; }

**somesh**replied 4 months ago

Hey buddy!As you well know, the program you've suggested here is great, reliable but there's a certain hitch. It runs with a time complexity of O(n^2). This might not seem like a big deal but when you're dealing with huge arrays with a large number of elements, it may cause performance issues. The challenge here is finding the number of inversions in a permutation on n elements, but the trick is doing it within O(nlogn) worst-case time. A smart modification of the merge sort algorithm can be a real game changer here, and lucky for you, I tweaked it to our benefit here: #include<stdio.h> int merge(int arr[], int temp[], int left, int mid, int right); int _mergeSort(int arr[], int temp[], int left, int right); int inversionCount(int arr[], int n) { int temp[n]; return _mergeSort(arr, temp, 0, n - 1); } int _mergeSort(int arr[], int temp[], int left, int right) { int mid, inv_count = 0; if (right > left) { mid = (right + left)/2; inv_count = _mergeSort(arr, temp, left, mid); inv_count += _mergeSort(arr, temp, mid+1, right); inv_count += merge(arr, temp, left, mid+1, right); } return inv_count; } int merge(int arr[], int temp[], int left, int mid, int right) { int i, j, k; int inv_count = 0; i = left; j = mid; k = left; while ((i <= mid - 1) && (j <= right)) { if (arr[i] <= arr[j]) { temp[k++] = arr[i++]; } else { temp[k++] = arr[j++]; inv_count = inv_count + (mid - i); } } while (i <= mid - 1) temp[k++] = arr[i++]; while (j <= right) temp[k++] = arr[j++]; for (i=left; i <= right; i++) arr[i] = temp[i]; return inv_count; } int main(int argv, char **args) { int arr[] = {4, 1, 3, 2}; printf("Number of inversions are %d \n", inversionCount(arr, sizeof(arr)/sizeof(arr[0]))); return 0; } As you asked, this piece of code will help you get the inversion count in an array and that too in O(nlogn) time complexity, thanks to merge sort.And before I close the lid on this one, I hope you are doing alright handling the pointers and recursion here. The inversion counting part is the only trick in this pudding. Remember, for every i in the first array, if j is an element in the second array, all elements after i in the first subarray and j in the second subarray will form valid inversions. So simply add up (mid – i) inversions for all such valid i and j!This should help you out. Let me know if you need me to break it down more.Happy Coding!